A breeding index to rank beef bulls for use on dairy females to maximize profit

1175

Source: Journal of Dairy Science

To read the full research article please click here

ABSTRACT

The desire to increase profit on dairy farms necessitates consideration of the revenue attainable from the sale of surplus calves for meat production. However, the generation of calves that are expected to excel in efficiency of growth and carcass merit must not be achieved to the detriment of the dairy female and her ability to calve and re-establish pregnancy early postcalving without any compromise in milk production. Given the relatively high heritability of many traits associated with calving performance and carcass merit, and the tendency for many of these traits to be moderately to strongly antagonistic, a breeding index that encompasses both calving performance and meat production could be a useful tool to fill the void in supporting decisions on bull selection. The objective of the present study was to derive a dairy–beef index (DBI) framework to rank beef bulls for use on dairy females with the aim of striking a balance between the efficiency of valuable meat growth in the calf and the subsequent performance of the dam. Traits considered for inclusion in this DBI were (1) direct calving difficulty; (2) direct gestation length; (3) calf mortality; (4) feed intake; (5) carcass merit reflected by carcass weight, conformation, and fat and the ability to achieve minimum standards for each; (6) docility; and (7) whether the calf was polled. Each trait was weighted by its respective economic weight, most of which were derived from the analyses of available phenotypic data, supplemented with some assumptions on costs and prices. The genetic merit for a range of performance metrics of 3,835 artificial insemination beef bulls from 14 breeds ranked on this proposed DBI was compared with an index comprising only direct calving difficulty and gestation length (the 2 generally most important characteristics of dairy farmers when selecting beef bulls). Within the Angus breed (i.e., the beef breed most commonly used on dairy females), the correlation between the DBI and the index of genetic merit for direct calving difficulty plus gestation length was 0.74; the mean of the within-breed correlations across all other breeds was 0.87. The ranking of breeds changed considerably when ranked based on the top 20 artificial insemination bulls excelling in the DBI versus excelling in the index of calving difficulty and gestation length. Dairy breeds ranked highest on the index of calving difficulty and gestation length, whereas the Holstein and Friesian breeds were intermediate on the DBI; the Jersey breed was one of the poorest breeds on DBI, superior only to the Charolais breed. The results clearly demonstrate that superior carcass and growth performance can be achieved with the appropriate selection of beef bulls for use on dairy females with only a very modest increase in collateral effect on cow performance (i.e., 2–3% greater dystocia expected and a 6-d-longer gestation length).